SUMMER MATH CALENDAR FOR INCOMANG 5 ' G GADDRS

4 WEEK MATH REVIEW

 FREEEBrie
TLANK yOU FOR YOUR DOWNLOAD!

This math calendar FREEBIE is meant to help provide your students with math practice throughout the summer or can be a tool for summer math tutoring. The calendar provides a variety of math topics to keep your students' minds in the math mode. It also can provide information about what topics your incoming math students either excel or struggle with.

This is a $\mathbf{4}$ Week Sample of a full $\mathbf{1 0}$ Week Summer Math Calendar. Click here to purchase the full version.

Throughout the past few years I have found that my students (and their parents) actually seem to enjoy having some math to do over the summer. I hope you are able to find this math calendar works well for your students and families.

~amy

INCLUDED IN TLLE FILL 10 WEEK MATL CALENDAR

Summer MathCalendar

Dear Soon to Be 5th Graders and Parents of Soon to Be 5th Graders,
This summer math calendar has not been created to torture you. It was actually created with the opposite intent. This was created to make you math aficionados, especially as you prepare to begin math in the fifth grade! To help you do this, I have put together his calendar with math concepts that you have

Summer MathCalendarEvaluationfor Students

Please rate the following on a scale from 1-10, with 1 being the easiest and 10 being the hardest
1.) How would you rate the difficulty of the problems in general throughout the summer math calendar?
2.) ___ How would you rate the variety and amount of problems throughout the calendar?
$5^{\text {h }}$ Grade Summer Math Quiz

- 5 rade

1.) Find the sum. $14,876+3,509$	2.) Add the fractions. $\frac{1}{6}+\frac{4}{6}=$	3.) Round 784,936 to the ten thousands place.
4.) Is 23 prime or composite? Explain.	5.) Write 26,748 in expanded form.	6.) Find the area of a garden that has a length of 4 yd and a width of 2 yd .
7.) Multiply 32×18.	8.) Write the number below in standard form: Sixteen thousand, eight hundred forty.	9.) Divide $987 \div 6$.
10.) How many inches are in 3 yards?	11.) $\overrightarrow{A B}$ and $\overrightarrow{A C}$ are perpendicular. Find the value of x.	12.) Compare by using $<,>$, or $=$. $\frac{3}{6} \bigcirc \frac{1}{2}$
13.) Draw an obtuse angle.	14.) Write two fractions equivalent to $\frac{1}{2}$.	15.) Jack ate 3 more berries than Jill. Jack ate 21 berries in total. Write and equation and then find out how many berries Jill ate.

$5{ }^{\text {in }}$ Grade Summer Math Topics Oddressed

- Parent and student introduction letter
- Math topics addressed
- Student and parent evaluation pages
- 10 Weeks of math review
- Answer key for 10 weeks of review
- Math Quiz for the first week of school covering topics in the calendar

Thank you for nespecting my work.

© Amy Hearne. All rights reserved. Purchase of this unit entitles the purchaser the right to reproduce the pages in limited quantities for single classroom use only. Duplication for an entire school, an entire school system or commercial purposes is strictly forbidden without written permission from the publisher.

Copying any part of this product and placing it on the Internet in any form (even a personal/classroom website) is strictly forbidden and is a violation of the Digital Millennium Copyright Act (DMCA). These items can be picked up in a google search and then shared worldwide for free.

~amy

Thank you to the following:

Incoming $5^{\text {th }}$ Grade Summer MathCalendar

WeekOne

Problem	Work\&Onswer
Solve: $\begin{array}{llll}\text { a.) } \frac{1}{4}+\frac{3}{4} & \text { b.) } \frac{6}{7}+\frac{3}{7} & \text { c.) } \frac{2}{5}+\frac{1}{5}\end{array}$	
List the factors of each number. a.) 72 b.) 54 c.) Write the factors that 72 and 54 have in common.	
Find the sum: a.) $3,298+783$ b.) $13,942+9,876$	
List the first five multiples of each number below: a.) 3 b.) 7	
Round each to the nearest hundred thousand place a.) 243,870 b.) 953,866	

WeekTwo

Problem	WOrk \& Onswer		
Is 63 prime or composite? Explain why.			
Decompose $3 \frac{4}{9}$ by rewriting the fraction two different ways.			
Write each number in expanded form:			
a.) 785			
b.) 3,235		\quad	Find
:---			

WeekThree

Problem	Work\& Onswer
Multiply the following using any method: a.) 137×8 b.) 26×19	
Find the quotients: a.) $85 \div 3$ b.) $346 \div 5$	
Write each number below in word form: a.) 5,470 b.) 197,306	
Casey bought 103 pieces of candy for her students who worked well in a group. The next week she bought three times as much. About how many pieces of candy did she buy in all?	
Write a fraction to describe the number of days in a week that start with the letter T.	

Problem	Work\&Onswer
Find the number of inches for the following: a.) 4 yards b.) 15 feet	
On a number line label the following fractions: $\frac{4}{5}, \frac{2}{5}, \frac{5}{5}, \frac{3}{5}$	
Find each sum. Change the tenths to hundredths before you add. a.) $\frac{4}{10}+\frac{15}{100}$ b.) $\frac{8}{10}+\frac{10}{100}$	
Use the distributive property to multiply a.) 24×9 b.) 35×14	
Compare the fractions, use $<,>$ or $=$	a.) $\frac{3}{7}$ $\frac{5}{7}$ b.) $\frac{1}{9}$ $\frac{1}{3}$

WeekOne

Problem	Work\&Onswer
Solve: $\begin{array}{llll}\text { a.) } \frac{1}{4}+\frac{3}{4} & \text { b.) } \frac{6}{7}+\frac{3}{7} & \text { c.) } \frac{2}{5}+\frac{1}{5}\end{array}$	a.) $\frac{4}{4}=1$ b.) $\frac{9}{7}=1 \frac{2}{7}$ c.) $\frac{3}{5}$
List the factors of each number. a.) 72 b.) 54 c.) Write the factors that 72 and 54 have in common.	a.) 72 : $1,2,3,4,6,8,9,12,18,24,36,72$ b.) $54: 1,2,3,6,9,18,27,52$ c.) Common Factors: $1,2,3,6,9,18$
Find the sum: a.) $3,298+783$ b.) $13,942+9,876$	$\begin{array}{ll}\text { a.) } 4,081 & \text { b.) } 23,818\end{array}$
List the first five multiples of each number below: a.) 3 b.) 7	a.) $3: 3,6,9,12,15$ b.) $7: 7,14,21,28,35$
Round each to the nearest hundred thousand place a.) 243,870 b.) 953,866	a.) 200,000 b.) 1,000,000

WeekTwo

Problem	Work \& Answer
Is 63 prime or composite? Explain why.	63 is composite because it is a number with more than two factors.
Decompose $3 \frac{4}{9}$ by rewriting the fraction two different ways.	Answers will vary but could include: $3 \frac{4}{9}=3+\frac{4}{9} \quad 3 \frac{4}{9}=3+\frac{2}{9}+\frac{2}{9}$
Write each number in expanded form: a.) 785 b.) 3,235	$\begin{aligned} & \text { a.) }(7 \times 100)+(8 \times 10)+(5 \times 1) \text { OR } 700+80+5 \\ & \text { b.) }(3 \times 1,000)+(2 \times 100)+(3 \times 10)+(5 \times 1) \\ & \text { OR } 3,000+200+30+5 \end{aligned}$
The area of a rectangle is 42 inches squared. If the width is 6 inches, what is the length?	$\begin{aligned} & 1 \times 6=42 \\ & 42 \div 6=7 \end{aligned}$ The length is 7 inches.
Find the difference (simplify your answer): a.) $\frac{5}{8}-\frac{3}{8}$ b.) $\frac{9}{12}-\frac{4}{12}$	a.) $\frac{1}{4}$ b.) $\frac{5}{12}$

WeekThree

Problern	WOrk \& OnSwer
Multiply the following using any method: a.) 137×8 b.) 26×19	a.) $1,096 \quad$ b.) 494

Problem	Work\&Onswer
Find the number of inches for the following: a.) 4 yards b.) 15 feet	a.) $3 \mathrm{ft}=1 \mathrm{yd}, 12 \mathrm{in}=1 \mathrm{ft}, 4 \times 3=12 \mathrm{ft} \times 12 \mathrm{in}=144$ inches in 4 yards b.) $15 \mathrm{ft} \times 12$ in $=180$ inches in $\mathbf{1 5}$ feet
On a number line label the following fractions: $\frac{4}{5}, \frac{2}{5}, \frac{5}{5}, \frac{3}{5}$	
Find each sum. Change the tenths to hundredths before you add. a.) $\frac{4}{10}+\frac{15}{100}$ b.) $\frac{8}{10}+\frac{10}{100}$	a.) $\frac{55}{100}=\frac{11}{20}$ b.) $\frac{90}{100}=\frac{9}{10}$
Use the distributive property to multiply a.) 24×9 b.) 35×14	a.) $(20 \times 9)+(4 \times 9)=180+36=216$ b.) $(30 \times 10)+(30 \times 4)+(5 \times 10)+(5 \times 4)=300+120+50+20=490$
Compare the fractions, use $<,>$ or $=$	a.) $\frac{3}{7}<\frac{5}{7} \quad$ b.) $\frac{1}{9}<\frac{1}{3}$

